Abstract

Ultrafast pump-probe measurements are used to characterize various samples, such as biological cells, bulk, and thin-film structures. However, typical implementations of the pump-probe apparatus are either slow or complex and costly hindering wide deployment. Here we combine a single-cavity dual-comb laser with a simple experimental setup to obtain pump-probe measurements with ultra-high sensitivity, fast acquisition, and high timing precision over long optical delay scan ranges of 12.5 ns that would correspond to a mechanical delay of about 3.75 m. We employ digital signal balancing to obtain shot-noise-limited detection compatible with pump-probe microscopy deployment. Here we demonstrate ultrafast photoacoustics for thin-film sample characterization. We measured a tungsten layer thickness of (700 ± 4) Å with shot-noise-limited detection. Such single-cavity dual-comb lasers can be used for any pump-probe measurements and are especially well-suited for ultrafast photoacoustic studies such as involving ultrasonic echoes, Brillouin oscillations, surface acoustic waves and thermal dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.