Abstract

Pennycress (Thlaspi arvense) and camelina (Camelina sativa) are nonfood winter oilseed crops that have the potential to contribute to sustainable biofuel production. However, undesired agronomic traits of pennycress and camelina currently hinder broad cultivation of these plants in the field. Recently, genome editing using the CRISPR-Cas technology has been applied to improve poor agronomic traits such as the weedy phenotype of pennycress and the oxidation susceptible lipid profile of camelina. In these works, the CRISPR reagents were introduced into the plants using the Agrobacterium-mediated floral dipping method. For accelerated domestication and value improvements of these winter oilseed crops, DNA-free genome editing platform and easy evaluation method of the CRISPR-Cas reagents are highly desirable. Cell wall-free protoplasts are great material to expand the use of gene engineering tools. In this chapter, we present a step-by-step guide to the mesophyll protoplast isolation from in vitro culture-grown pennycress and soil-grown camelina. The protocol also includes procedures for DNA transfection and protoplast viability test using fluorescein diacetate. With this protocol, we can isolate an average of 6×106 cells from pennycress and 3×106 cells from camelina per gram of fresh leaf tissues. Using a 7.3kb plasmid DNA carrying green and red fluorescent protein marker genes, we can achieve an average transfection rate of 40% validated by flow cytometry for both plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call