Abstract

Developing new solid-state electrolyte materials for improving the proton conductivity remains an important challenge. Herein, a novel two-dimensional layered solid-state proton conductor Bi2O2-SiW12 nanocomposite, based on silicotungstic acid (H4SiW12O40) and Bi(NO3)3·5H2O, was synthesized and characterized. The composite consists of a layered cation framework [Bi2O2]2+ and interlayer-embedded counteranionic [SiW12O40]4-, which forms continuous hydrogen bond (O-H···O) networks through the interaction of adjacent oxygen atoms on the surface of the [Bi2O2]2+ and oxygen atoms of the H4SiW12O40. Facile proton transfer along these pathways endows the Bi2O2-SiW12 (30:1) nanocomposite with an excellent proton conductivity of 3.61 mS cm-1 at 90 °C and 95% relative humidity, indicating that the nanocomposite has good prospects as a highly efficient proton conductor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.