Abstract
Collecting histograms over RFID tags is an essential premise for effective aggregate queries and analysis in large-scale RFID-based applications. In this paper we consider an efficient collection of histograms from the massive number of RFID tags, without the need to read all tag data. In order to achieve time efficiency, we propose a novel, ensemble sampling-based method to simultaneously estimate the tag size for a number of categories. We first consider the problem of basic histogram collection, and propose an efficient algorithm based on the idea of ensemble sampling. We further consider the problems of advanced histogram collection, respectively, with an iceberg query and a top- $k$ query. Efficient algorithms are proposed to tackle the above problems such that the qualified/unqualified categories can be quickly identified. This ensemble sampling-based framework is very flexible and compatible to current tag-counting estimators, which can be efficiently leveraged to estimate the tag size for each category. Experiment results indicate that our ensemble sampling-based solutions can achieve a much better performance than the basic estimation/identification schemes.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Parallel and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.