Abstract

Recently, Power-to-Liquids (PtL) and Power-to-Gas (PtG) technologies have been regarded as promising pathways for renewable energy storage and CO2 mitigation. Herein, we newly proposed two PtL/PtG hybrid processes (Cases A and B) by integrating the Fe-based Fischer-Tropsch (F-T) synthesis and olefin oligomerization, to further enhance the production of value-added liquid hydrocarbons. The process modelling and case study were implemented to evaluate their process performances by using Aspen Plus. In addition, the effects of different feeding conditions (i.e., CO/CO2 feeding) and process configurations (i.e., F-T synthesis only or two-stage reactor) were also comparatively analyzed. It is found that both Cases A and B are efficient technologies for converting CO2 into value-added hydrocarbons, and Case A is found to be more beneficial in the aspects of the carbon and thermal efficiencies, and net CO2 reduction. While, Case B is competitive in producing high-value liquid hydrocarbons. Moreover, the options of CO2 feeding and two-stage reactor are more preferable than the options of CO feeding and F-T synthesis only, and both Cases A and B are more competitive in the aspects of syncrude production, thermal efficiency, and CO2 reduction, as compared to the Base cases 1–3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call