Abstract

In this work, a novel biofilm-based fermentation of Beauveria bassiana was employed to convert R-2- phenoxypropionic acid (R-PPA) to R-2-(4-hydroxyphenoxy) propionic acid (R-HPPA). The biofilm culture model of Beauveria bassiana produced a significantly higher R-HPPA titer than the traditional submerged fermentation method. Mannitol dosage, tryptone dosage, and initial pH were the factors that played a significant role in biofilm formation and R-HPPA synthesis. Under the optimal conditions, the maximum R-HPPA titer and productivity approached 22.2 g/L and 3.2 g/(L·d), respectively. A two-stage bioreactor combining agitation and static incubation was developed to further increase R-HPPA production. The process was optimized to achieve 100 % conversion of R-PPA, with a maximum R-HPPA titer of 50 g/L and productivity of 3.8 g/(L·d). This newly developed biofilm-based two-stage fermentation process provides a promising strategy for the industrial production of R-HPPA and related hydroxylated aromatic compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call