Abstract
Polymalic acid (PMA) is a linear anionic polyester composed of L-malic acid monomers, which have potential applications as drug carriers, surgical suture, and biodegradable plastics. In this study, a novel strain of Aureobasidium pullulans var. melanogenum GXZ-6 was isolated and identified according to the morphological observation and deoxyribonucleic acid internal-transcribed spacer sequence analysis, and the product of PMA was characterized by FT-IR, 13C-NMR, and 1H-NMR spectra. The PMA titer of GXZ-6 reached 62.56 ± 1.18gL-1 with productivity of 0.35gL-1h-1 using optimized medium with addition of metabolic intermediates (citrate and malate) and inhibitor (malonate) by batch fermentation in a 10-L fermentor. Besides that the malate for PMA synthesis in GXZ-6 might mainly come from the glyoxylate cycle, based on results, citrate, malate, malonate, and maleate increased while succinate and fumarate inhibited the production of PMA, which was different from that of other A. pullulans. This study provided a potential strain and a simple metabolic control strategy for high-titer production of PMA and shared novel information on the biosynthesis pathway of PMA in A. pullulans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.