Abstract
In this study, efficient and sustainable conversion of waste bread (WB) to 5-hydroxymethyl-2-furoamine (HMFA) was achieved in a cascade reaction in betaine:malonic acid (B:MA) − water. 5-HMF (30.3 wt% yield) was synthesized from WB (40.0 g/L) in B:MA − water (B:MA, 18 wt%) in 45 min at 190 °C. By using the newly created recombinant E. coli HNILGD-AlaDH cells expressing L-alanine dehydrogenase (AlaDH) and ω-transaminase mutant HNILGD as biocatalyst, the WB-valorized 5-HMF was biologically aminated into HMFA in a high yield (92.1%) at 35 °C for 12 h through in situ removal of the amino transfer by-products of the amine donor, greatly reducing amine donor dosage (from D-Ala/5-HMF = 16/1 to D-Ala/5-HMF = 2/1, mol/mol) and improving the productivity of HMFA (0.282 g HMFA per g WB). This two-step chemical-enzymatic cascade reaction strategy with B:MA and HNILGD-AlaDH whole-cell provides a new idea for the chemoenzymatic synthesis of valuable furan chemicals from waste biomass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.