Abstract

Glutathione is a bioactive tripeptide composed of glycine, L-cysteine, and L-glutamate, and has been widely used in pharmaceutical, food, and healthy products. The current metabolic studies of glutathione were mainly focused on the native producing strains with precursor amino acid supplementation. In the present work, Corynebacterium glutamicum, a workhorse for industrial production of a series of amino acids, was engineered to produce glutathione. First, the introduction of glutathione synthetase gene gshF from Streptococcus agalactiae fulfilled the ability of glutathione production in C. glutamicum and revealed that L-cysteine was the limiting factor. Then, considering the inherent capability of L-glutamate synthesis and the availability of external addition of low-cost glycine, L-cysteine biosynthesis was enhanced using a varieties of pathway engineering methods, such as disrupting the degradation pathways of L-cysteine and L-serine, and removing the repressor responsible for sulfur metabolism. Finally, the simultaneously introduction of gshF and enhancement of cysteine formation enabled C. glutamicum strain to produce glutathione greatly. Without external addition of L-cysteine and L-glutamate, 756mg/L glutathione was produced. This is first time to demonstrate the potential of the glutathione non-producing strain C. glutamicum for glutathione production and provide a novel strategy to construct glutathione-producing strains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.