Abstract

The flexibility of XML data model allows a more natural representation of uncertain data compared with the relational model. Matching twig pattern against XML data is a fundamental problem in querying information from XML documents. For a probabilistic XML document, each twig answer has a probabilistic value because of the uncertainty of data. The twig answers that have small probabilistic value are useless to the users, and usually users only want to get the answers with the k largest probabilistic values. To this end, existing algorithms for ordinary XML documents cannot be directly applicable due to the need for handling probability distributional nodes and efficient calculation of top-k probabilities of answers in probabilistic XML. In this paper, we address the problem of finding twig answers with top-k probabilistic values against probabilistic XML documents directly. We propose a new encoding scheme called PEDewey for probabilistic XML in this paper. Based on this encoding scheme, we then design two algorithms for finding answers of top-k probabilities for twig queries. One is called ProTJFast, to process probabilistic XML data based on element streams in document order, and the other is called PTopKTwig, based on the element streams ordered by the path probability values. Experiments have been conducted to study the performance of these algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.