Abstract
The technological advances in the areas of Big Data and machine learning have led to many useful applications in the financial industry. However, the success of these technologies depends on the analysis of useful information. The financial data is often asymmetrical in nature. It is the nature of information that is crucial in making financial decisions. It is often used to detect the financial frauds, predict the market trends, marketing financial products, and various other use cases. In this work, we are proposing that the ensemble random forests will be able to make better predictions on the asymmetrical financial data. We are taking two cases for making the predictions—one, predicting the customers who will buy the term deposit and two, credit card fraud detection. In both cases, the ensemble random forests were compared with the logistic regression and demonstrated with the results where the random forests performed better than the logistic regression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.