Abstract

AbstractThe training hyperparameters (learning rate, augmentation policies, e.t.c) are key factors affecting the performance of deep networks for medical image segmentation. Manual or automatic hyperparameter optimization (HPO) is used to improve the performance. However, manual tuning is infeasible for a large number of parameters, and existing automatic HPO methods like Bayesian optimization are extremely time consuming. Moreover, they can only find a fixed set of hyperparameters. Population based training (PBT) has shown its ability to find dynamic hyperparameters and has fast search speed by using parallel training processes. However, it is still expensive for large 3D medical image datasets with limited GPUs, and the performance lower bound is unknown. In this paper, we focus on improving the network performance using hyperparameter scheduling via PBT with limited computation cost. The core idea is to train the network with a default setting from prior knowledge, and finetune using PBT based hyperparameter scheduling. Our method can achieve 1%–3% performance improvements over default setting while only taking 3%–10% computation cost of training from scratch using PBT. KeywordsHyperparameter optimizationPopulation based trainingBayesian optimizationMedical image segmentation

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.