Abstract
Crystalline silicon solar cells can achieve high power conversion efficiency and can be successfully commercialized; however, the exploration of optimization strategies is still necessary. Here, we demonstrated improved performance of a polycrystalline silicon solar cell by depositing Sb2Ox/CdO double layers onto a Si wafer via a low-cost route. The metal oxide layers, forming effective heterojunctions, suppressed carrier recombination and reduced surface reflection. Additionally, the heterojunctions of Sb2Ox/CdO/Si enhanced the transmission of electrons and holes and simultaneously, a wider response range in the solar spectrum was realized. The power conversion efficiency improved from 12.6 to 16.7% in a polycrystalline silicon solar cell, with relative increase of 33%. It is expected that the metal oxide-enhanced devices will have tremendous potential in commercial applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.