Abstract

Photocatalysis offers a green and promising strategy for light-driven pollutant degradation to address water pollution. Yet, challenges in conversion efficiency and cost-efficiency propel the search for effective metal-free photocatalysts. Here, we employ a ball milling technique using organic solvent molecules to enhance the exfoliation of g-C3N4 nanosheets. Incorporating tetrahydrofuran, with its distinctive five-membered monooxygenase ring structure, endows exfoliated CN nanosheets (TCN) with remarkable electron-donating capabilities, expanding specific surface area and active sites, essential for intricate photocatalytic reactions. Comparative assessments unequivocally establish TCN's superiority, revealing a remarkable 3.6-fold enhancement in RhB dye degradation and a remarkable 99.7 % removal efficiency. TCN demonstrates rapid, complete reduction of heavy metal ions (Cr6+) under natural sunlight within 10 min and exhibits a significant 2.3-fold antibiotic degradation enhancement over pristine CN. This pioneering work unveils the mechanisms behind TCN's superior photocatalytic performance, offering insights into designing advanced photocatalysts for crucial water purification applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call