Abstract

To well manage the quality of the injected electrical power into the grid from a variable speed wind turbine (VSWT), direct power control (DPC) scheme using second order sliding mode control (SOSMC) based on super-twisting algorithm (STA) approach is proposed. Meanwhile, for reaching the adequate gains of STA, an appropriate optimizer should be implemented. Therefore, shuffled complex evolution (SCE) algorithm-based parameter identification is suggested. To verify the effectiveness of the proposed SCE based controller, several well-known algorithms have been tested under various operating conditions namely: particle swarm optimizer (PSO), artificial bee colony optimizer (ABCO), ant colony optimization (ACO), rooted tree optimizer (RTO) and gray wolf optimizer (GWO). The results confirm the superiority of the proposed SCE algorithm among the competing algorithms and classic SMC regarding the active power steady-state error (0.7233%), undershoot percentage (0.1333%), settling time (0.6810 × 10−3 s), rise time (1.7515 × 10−4 s), peak value (7.0521 × 103 W), overall efficiency (99.2800%), and total harmonic distortion (0.7900%). The proposed SCE based controller allows getting important performances under various operating condition of wind speed and load variations with interesting electrical network stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.