Abstract

This work introduces a mixed-integer nonlinear programming (MINLP) formulation for the efficient planning of crude oil supplies to a major refinery, through a long-distance pipeline. The proposed approach combines the potentials of slot-based and general precedence continuous-time representations to simultaneously address two problems that are typically decoupled: pipeline transportation and crude oil blending. General precedence sequencing variables coordinate incoming/outgoing flows to/from every tank, while crude oil batches are traced into the pipeline following a slot-based scheme. The model precisely monitors key component concentrations, keeping oil properties within admissible ranges. Since the proposed formulation is nonconvex, an efficient solution strategy is followed and a tailored relaxation is subsequently solved to assess the quality of the solutions achieved. Results show that the model is able to find very efficient solutions to real-world case studies in modest CPU times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.