Abstract
The physical mechanism of highly efficient photoluminescence (PL) emission from p-type silicon is described by a comparative study of the effectiveness of the etching parameters in an electrochemical anodization technique. Two series of porous silicon samples were prepared in a combination of anodization current and time, to maintain the total amount of anodic charge transfer constant. Photoluminescence studies show that irrespective of the amount of charge transfer, the samples prepared with comparatively higher current density show an efficient PL as well as stronger blueshift in the emission energy vis-a-vis the samples prepared for longer durations. An overall decrease in crystallite size, as estimated by Raman spectral analysis, was observed for both series of samples with the progress of charge transfer. Comparative analysis shows a marginal difference in crystallite size for both series of samples in the initial state of charge transfer, whereas major differences arise at higher values. This is explained with the formation of silicon suboxide on the porous surface at higher current density, leading to initiation of side wall reaction, and higher reduction rate in crystallite size as well as strong luminescence due to the carrier quantum confinement effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.