Abstract

AbstractTransient‐based leak/burst detection has received more and more attentions in the operation and management of water distribution networks. However, with the increase in pipe network complexity, it is hard to detect and locate the potential pipe defects and water losses efficiently. Recently, we proposed an efficient leak/burst localization strategy in single pipelines based on the forward and backward transient analysis, and in this work, this effective approach is customized for the more realistic branched (tree‐shaped) pipe networks. Unlike traditional transient‐based methods which rely on tedious optimization procedures, the proposed method uses a mismatch property between forward and backward analyses of transient signals for the pipe burst detection during the water supply process. Compared with other developed methods, this method can directly calculate the defect location, so it is expected to have high efficiency and wide applicability. To fulfill this goal, a framework for burst detection in a tree‐shaped pipe network is developed in this paper. Using the mass conservation and energy relations at the branched junctions, the forward and backward transient analysis is extended from one pipe to another until the burst is found and then located in the network. Both experimental and numerical tests show the effectiveness of the proposed method, and further analysis has shown that the method is also valid for leak detection in both transient and steady conditions, confirming the robustness and practicality of this proposed method. At last, this paper discusses the influence of transient sources and the potential combination of the method with other methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.