Abstract
Efficient photoelectrochemical (PEC) water splitting was demonstrated by a doping-controlled GaN photoanode coated with NiO cocatalyst. Highly doped n-GaN was sandwiched between undoped GaN layers to effectively collect electrons through ohmic contact. With zero external bias, the photocurrent density of the optimized doping profile was ∼3.5 times higher than that of the undoped GaN reference. However, the increased doping concentration degraded the photoanode stability, which was attributed to crystalline defects generated in the highly doped n-GaN. NiO cocatalyst improved the long-term stability of the photoanode because of GaN/NiO band alignment, enhancing hole transport into NiO and suppressing PEC corrosion mediated by hole crowding in GaN. This work established a design strategy for increasing the photocurrent as well as improving stability during water splitting with a GaN-based photoanode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.