Abstract
Though photocatalytic purification of NO has been widely studied, how to avoid secondary pollution during gas-solid reaction is still a challenge, especially in inhibiting the formation of toxic intermediates (NO2) and avoiding the blow away of powdery photocatalyst. Herein, we proposed a one-step solvothermal method to prepare melamine sponge (MS) supported and functionalized g-C3N4 (CN), which simultaneously realizes the inhibition of NO2 formation and catalyst loss. Sodium hydroxide, which plays a dual role, has been introduced during the preparation of supported photocatalyst. Specifically, sodium atom, as the modifier of performance, could facilitate the randomly distributed charge of pristine CN to be converged, which accelerates the adsorption/activation of reactants for efficient and deep NO oxidation. Hydroxyl group, as the binder between CN and MS, induces the interaction by forming hydrogen bonds, which contributes to the firm immobilization of powdery photocatalyst. The supported sample exhibits outstanding NO removal rate (58.90%) and extremely low NO2 generation rate (1.41%), and the mass loss rate of photocatalyst before and after reaction is less than 1%. The promotion mechanism of performance also has been elaborated. This work takes environmental risks as a prerequisite to propose a feasible strategy for perfecting the practical application of photocatalytic technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.