Abstract
Photocatalysis is one of the most promising ways to realize artificial photosynthesis. The biologically inspired photocatalysts with 3D flower-like structures have attracted much attention. In this study, an effective method for the synthesis of composite photocatalytic material, NH4TiOF3/TiO2/g-C3N4, with a 3D camellia-like structure, was developed. The 3D hierarchical structure of the composite material enabled multiple refractions and reflections of light within the catalyst, which greatly improved the efficiency of the sunlight harvesting. The combination of NH4TiOF3 and TiO2 also effectively reduced the electron-hole recombination in the g-C3N4. To evaluate its photocatalytic performance, the prepared nanostructured composite materials were tested for the water-splitting with simulated sunlight. It showed the hydrogen evolution at the rate of 3.6 mmol/g/h, which is 4.0 times faster than that from the pure g-C3N4. The composite materials exhibited excellent cycling stability. The detailed mechanism of the Z-scheme heterojunction was also discussed. The proposed synthesis route for the creation of 3D flower-like hierarchical composites provides a new effective technique for developing efficient, active, and stable composite photocatalysts for hydrogen production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.