Abstract
Constituting solid solutions for prototype perovskite compound SrTiO3 offers appealing means to tailor the optical and photocatalytic properties of this wide band gap semiconductor. Here we successfully synthesized a series of Sr1-xBixTi1-xFexO3 (0≤x≤0.5) solid solutions via hydrothermal method. Their crystal structures, surface nature and other physicochemical properties were systematically explored. Our results show that a large portion of BiFeO3 (up to 50%) can be incorporated into the structure SrTiO3 without symmetry degradation from cubic. A number of important factors such as microstructures, light absorbance and surface hydrophilicity are all strongly correlated with Bi/Fe content in the solid solutions. Photocatalytic performance was greatly improved after formation of solid solutions and high activity normally occurs in samples with large surface area, high crystallinity as well as absence of Bi (V) species. The highest activity belongs to sample Sr0.6Bi0.4Ti0.6Fe0.4O3 with photocatalytic hydrogen production rate ∼50μmol/h under full range irradiation and ∼5μmol/h under visible light irradiation, corresponding to apparent quantum efficiency ∼0.63% and 0.11%, respectively. Theoretical calculation reveals the critical role of Fe in constituting spin-polarized bands inside the intrinsic band gap of SrTiO3, therefore is responsible for band gap reduction and visible light activities. This work highlights the benefits of forming solid solutions in the design and development of efficient photocatalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.