Abstract

A facile, environmental-friendly Ag3PO4-PN photocatalyst was synthesized by a simple precipitation method at room temperature in the presence of ammonia and polyvinyl pyrrolidone (PVP). As-synthesized samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible diffuse reflectance spectroscopy (UV-vis DRS). The enhancement of photocatalytic efficiency of Ag3PO4-PN is strongly dependent on the excellent photo-absorption capacity, sharp edges and corners, and synergistic effect of PVP and NH3·H2O. The effects of catalyst dosage, TC concentration and solution pH were explored with tetracycline hydrochloride (TC) as target contamination. The mineralization was evaluated by total organic carbon (TOC) analysis and determination of the concentration of inorganic ions such as NO3 (-) and Cl(-). Radical detection experiment indicated the h(+) and ·O(2-) are major active species in the degradation of TC by Ag3PO4-PN. Moreover, photocatalyst stability and regeneration experiments exhibited the favorable stability and rejuvenation ability, suggesting a promising prospect of practical application of Ag3PO4 in the wastewater treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.