Abstract

This work aims to develop a highly efficient solar light-induced photocatalyst based on La-Mn co-doped Fe2O3 nanoparticles. Pure Fe2O3 and La-Mn co-doped Fe2O3 nanoparticles were fabricated by a simple co-precipitation method. The photocatalysts were analyzed for their morphological, structural, and magnetic characteristics. Scanning electron microscopy analysis demonstrated the formation of semi-spherical nanoparticles along with small aggregations. The size of nanoparticles was measured using a transmission electron microscope and found in the range of 42-49nm. The crystalline nature and geometry of synthesized nanoparticles were investigated using X-ray diffraction analysis. Due to the incorporation of La-Mn, the saturation magnetization and remanent magnetization of the nanoparticles decreased from 6.17 to 2.89emu/g and 1.15 to 0.52emu/g, respectively, while the coercivity was reduced from 756.72 to 756.67 Oe. The surface area of nanoparticles was increased from 77.93 to 87.45 m2/g as a result of La-Mn co-doping. The photocatalytic performance of the Fe2O3, La0.1Mn0.3Fe1.6O3, and La0.2Mn0.2Fe1.6O3 catalysts was assessed by their capability to degrade Rhodamine B (RhB) under solar light illumination. La0.2Mn0.2Fe1.6O3 displayed exceptional degradation performance, degrading RhB to 91.78% in 240min, in comparison to La0.1Mn0.3Fe1.6O3 (71.09%) and pristine Fe2O3 (58.21%) under specified reaction conditions ((RhB) = 50ppm; (catalyst) = 40mg/L; pH = 7; T = 25°C)). RhB degradation was affected by changing pH, catalytic dosage, dye concentration, and temperature. The degradation of RhB was found to be pseudo-1st order kinetics. The exceptional photocatalytic performance of La0.2Mn0.2Fe1.6O3 catalysts showed that the synthesized nanoparticles could be effectively utilized to remove organic pollutants from industrial wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call