Abstract

This study aims to develop the graphene oxide-based metal sulphide nanocomposite, which has outstanding photocatalytic properties. The graphene oxide (GO) was prepared by the Hummers method, and GO/nickel sulphide (GO/NiS) nanocomposite was synthesized by the hydrothermal method to evaluate the photocatalytic dye degradation. The synthesized nanocomposites were characterized by X-ray diffraction, Fourier transform infrared, ultraviolet–visible, scanning electron microscopy with energy-dispersive X-ray and transmission electron microscopy techniques. Photocatalytic dye degradation efficiency of GO, NiS and GO/NiS nanocomposites were evaluated by using crystal violet (CV) dye. The GO/NiS nanocomposite exhibited good photocatalytic activity as compared to NiS as well as GO. The optimum condition obtained for the effective photocatalytic degradation of CV is pH = 8.0, crystal violet = 2.0 × 10−5 M, nanocomposite = 0.30 g. The rate of degradation of CV with the composite was found to be 2.39 × 10−4 s−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call