Abstract
AbstractArtificial van der Waals heterostructures of 2D layered materials are attractive from the viewpoint of the possible discovery of new physics together with improved functionalities. Stacking various combinations of atomically thin semiconducting transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se, Te) with a hexagonal crystal structure, typically leads to the formation of a staggered Type II band alignment in the heterostructure, where electrons and holes are confined in different layers. Here, the comprehensive studies are performed on heterostructures prepared from monolayers of WSe2 and MoTe2 using differential reflectance, photoluminescence (PL), and PL excitation spectroscopy. The MoTe2/WSe2 heterostructure shows strong PL from the MoTe2 layer at ≈1.1 eV, which is different from the quenched PL from the WSe2 layer. Moreover, enhancement of PL intensity from the MoTe2 layer is observed because of the near‐unity highly efficient photocarrier transfer from WSe2 to MoTe2. These experimental results suggest that the MoTe2/WSe2 heterostructure has a Type I band alignment where electrons and holes are confined in the MoTe2 layer. The findings extend the diversity and usefulness of ultrathin layered heterostructures based on transition metal dichalcogenides, leading to possibilities toward future optoelectronic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.