Abstract

To achieve the efficient removal of pharmaceutical wastes, novel photo-Fenton catalysts, iron-decorated boron nitride quantum dots (Fe@BNQDs) were prepared. Fe@BNQDs were characterized using XRD, SEM-EDX, FTIR, and UV-Vis spectrophotometry. The decoration of Fe on the surface of BNQDs enhanced the catalytic efficiency due to the photo-Fenton process. Photo-Fenton catalytic degradation of folic acid was investigated under UV and visible light. The influence of H2O2, catalyst dose, and temperature on the degradation yield of folic acid was investigated using Response Surface Methodology. Moreover, the efficiency of the photocatalysts and kinetics was investigated. Radical trapping experiments revealed that holes were the main dominant species in the photo-Fenton degradation mechanism and BNQDs played active roles because of their hole extraction ability. Additionally, active species such as e- and O2 -˙ have a medium effect. The computational simulation was utilized to provide insights into this fundamental process, and for this purpose, electronic and optical properties were calculated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.