Abstract

This paper presents a simulation-based performance prediction framework for large-scale, data-intensive applications on large-scale machines. The framework consists of two components: application emulators and a suite of simulators. Application emulators provide a parameterized model of data access and computation patterns of the applications and enable changing critical application components (input data partitioning, data declustering, processing structure, etc.). The suite of simulators executes quickly on a high performance workstation to allow performance prediction of large-scale parallel machine configurations. The key to efficient simulation of very large configurations is to elide the majority of low-level hardware events while preserving data dependencies and distributions. The authors evaluate their performance prediction tool using a set of three data-intensive applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.