Abstract

Recent progress in PDE constrained optimization on shape manifolds is based on the Hadamard form of shape derivatives, i.e., in the form of integrals at the boundary of the shape under investigation, as well as on intrinsic shape metrics. From a numerical point of view, domain integral forms of shape derivatives seem promising, which rather require an outer metric on the domain surrounding the shape boundary. This paper tries to harmonize both points of view by employing a Steklov-Poincar\'e type intrinsic metric, which is derived from an outer metric. Based on this metric, efficient shape optimization algorithms are proposed, which also reduce the analytical labor, so far involved in the derivation of shape derivatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.