Abstract

In the domain of mobile robotic navigation, the real-time generation of low-cost, executable reference trajectories is crucial. This paper propounds an innovative path planning strategy, termed Dynamic Bridging Rapidly Exploring Random Tree (DBR-RRT), which endeavors to enable safe and expedited path navigation. Initially, a heuristic discrimination method is engaged in the path search phase, whereby the issue of sluggish search velocity is tackled by evaluating whether sampled points reside at “bridging locations” within a free space, and by assessing the spatial–geometric relationships between proximate obstacles and auxiliary points. Subsequently, by leveraging extended speed, additional sampling points are generated in the vicinity of existing points to augment the search’s efficacy. Ultimately, the path is optimized and pruned by synthesizing the local curvature of the sampling points and the proximity to obstacles, assigning varied priorities to nodes, thus ensuring that the path’s quality and smoothness is upheld.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.