Abstract

Since the 1950s, with the great development of computer technology and bionics, particle swarm optimization (PSO) was raised. The particle swarm optimization mimics the nature biological group behaviors, and has the following advantages compared to classic optimization algorithms: it is a global optimization process and doesn’t depend on the initial state; it can be applied widely without prior knowledge on the optimization problems; the ideas and the implements of PSO are quite simple, the steps are standardization, and it’s very convenient to integrate it with other algorithms; PSO is based on the swarm intelligence theory, and it has very good potential parallelism. Particle swarm optimization has a feature that fitness value is used to exchange information in the population, and guides the population to close the optimal solution. Therefore, a mount of fitness should be calculated in swarm intelligence optimization algorithms in order to find the optimal solution or an approximate one. However, when the calculation of the fitness is quite complex, the time cost of this kind of algorithms will be too large. What’s more, the fitness of optimization problems in the real world is often difficult to calculate. Addressing this problem,Efficient Particle Swarm Optimization Algorithm Based on Affinity Propagation (EAPSO) is proposed in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.