Abstract

We present an efficient particle filtering method to perform optimal estimation in jump Markov (nonlinear) systems (JMSs). Such processes consist of a mixture of heterogeneous models and possess a natural hierarchical structure. We take advantage of these specificities in order to develop a generic filtering methodology for these models. The method relies on an original and nontrivial combination of techniques that have been presented recently in the filtering literature, namely, the auxiliary particle filter and the unscented transform. This algorithm is applied to the complex problem of time-varying autoregressive estimation with an unknown time-varying model order. More precisely, we develop an attractive and original probabilistic model that relies on a flexible pole representation that easily lends itself to interpretations. We show that this problem can be formulated as a JMS and that the associated filtering problem can be efficiently addressed using the generic methodology developed in this paper. Simulations demonstrate the performance of our method compared to standard particle filtering techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.