Abstract

Mathematical models of complex systems rely on parameter values to produce a desired behavior. As mathematical and computational models increase in complexity, it becomes correspondingly difficult to find parameter values that satisfy system constraints. We propose a Markov Chain Monte Carlo (MCMC) approach for the problem of constrained model parameter generation by designing a Markov chain that efficiently explores a model’s parameter space. We demonstrate the use of our proposed methodology to analyze responses of a newly constructed bistability-constrained model of protein phosphorylation to perturbations in the underlying protein network. Our results suggest that parameter generation for constrained models using MCMC provides powerful tools for modeling-aided analysis of complex natural processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.