Abstract

We present a practical, efficient and powerful solution to the problem of parameter estimation in highly non-linear models. The method is based on the ensemble Kalman filter, and has previously been successfully applied to a simple climate model with steady-state dynamics. We demonstrate, via application to the well-known Lorenz model, that the method can successfully perform multivariate parameter estimation even in the presence of chaotic dynamics. Traditional variational methods using an adjoint model have limited applicability to problems of this nature, and the alternative of a brute force (or randomized) search in parameter space is prohibitively expensive for high-dimensional applications. The cost of our method is comparable to that of integrating an ensemble to statistical convergence, and therefore this technique appears to be ideally suited for probabilistic climate prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.