Abstract

We present a Monte Carlo algorithm that facilitates efficient parallel tempering simulations of the density of states g(E) . We show that the algorithm eliminates the supercritical slowing down in the case of the Q=20 and Q=256 Potts models in two dimensions, typical examples for systems with extreme first-order phase transitions. As recently predicted, and shown here, the microcanonical heat capacity along the calorimetric curve has negative values for finite systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.