Abstract

Tensor based methods are receiving renewed attention in recent years due to their prevalence in diverse real-world applications. There is considerable literature on tensor representations and algorithms for tensor decompositions, both for dense and sparse tensors. Many applications in hypergraph analytics, machine learning, psychometry, and signal processing result in tensors that are both sparse and symmetric, making it an important class for further study. Similar to the critical Tensor Times Matrix chain operation (TTMc) in general sparse tensors, the Sparse Symmetric Tensor Times Same Matrix chain (S3TTMc) operation is compute and memory intensive due to high tensor order and the associated factorial explosion in the number of non-zeros. In this work, we present a novel compressed storage format CSS for sparse symmetric tensors, along with an efficient parallel algorithm for the S3TTMc operation. We theoretically establish that S3TTMc on CSS achieves a better memory versus run-time trade-off compared to state-of-the-art implementations. We demonstrate experimental findings that confirm these results and achieve up to 2.9× speedup on synthetic and real datasets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call