Abstract

Modular exponentiation is fundamental to several public-key cryptography systems such as the RSA encryption system, as well as the most dominant part of the computation performed. The operation is time consuming for large operands. This paper analyses and compares the complexity of a variety of algorithms proposed to compute the modular exponentiation of a relatively large binary number, and proposes a new parallel modular exponentiation method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.