Abstract

Major web search engines answer thousands of queries per second requesting information about billions of web pages. The data sizes and query loads are growing at an exponential rate. To manage the heavy workload, we consider techniques for utilizing a Graphics Processing Unit (GPU). We investigate new approaches to improve two important operations of search engines -- lists intersection and index compression. For lists intersection, we develop techniques for efficient implementation of the binary search algorithm for parallel computation. We inspect some representative real-world datasets and find that a sufficiently long inverted list has an overall linear rate of increase. Based on this observation, we propose Linear Regression and Hash Segmentation techniques for contracting the search range. For index compression, the traditional d-gap based compression schemata are not well-suited for parallel computation, so we propose a Linear Regression Compression schema which has an inherent parallel structure. We further discuss how to efficiently intersect the compressed lists on a GPU. Our experimental results show significant improvements in the query processing throughput on several datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.