Abstract

The real-space density-functional perturbation theory (DFPT) for the computations of the response properties with respect to the atomic displacement and homogeneous electric field perturbation has been recently developed and implemented into the all-electron, numeric atom-centered orbitals electronic structure package FHI-aims. It is found that the bottleneck for large scale applications is the computation of the response density matrix, which scales as O(N3). Here for the response properties with respect to the homogeneous electric field, we present an efficient parallel linear scaling algorithm for the response density matrix calculation. Our scheme is based on the second-order trace-correcting purification and the parallel sparse matrix–matrix multiplication algorithms. The new scheme reduces the formal scaling from O(N3) to O(N), and shows good parallel scalability over tens of thousands of cores. As demonstrated by extensive validation, we achieve a rapid computation of accurate polarizabilities using DFPT. Finally, the computational efficiency of this scheme has been illustrated by making the scaling tests and scalability tests on massively parallel computer systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.