Abstract

Computing the robot forward dynamics is important for real-time computer simulation of robot arm motion. Two efficient parallel algorithms for computing the forward dynamics for robot arm simulation were developed to be implemented on an SIMD computer with n processors, where n is the number of degrees-of-freedom of the manipulator. The first parallel algorithm, based on the Composite Rigid-Body method, generates the inertia matrix using the parallel Newton-Euler algorithm, the parallel linear recurrence algorithm, and the row-sweep algorithm, and then inverts the inertia matrix to obtain the joint acceleration vector desired at time t. The second parallel algorithm, based on the conjugate gradient method, computes the joint accelerations with a time complexity of O(n) for multiplication operation and O(nlogn) for addition operation. The proposed parallel computation results are compared with the existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.