Abstract

AbstractPairings in elliptic curve cryptography are functions which map a pair of elliptic curve points to a non-zero element of a finite field. In recent years, many useful cryptographic protocols based on pairings have been proposed. The fast implementations of pairings have become a subject of active research areas in cryptology.In this paper, we give the geometric interpretation of the group law on Hessian curves. Furthermore, we propose the first algorithm for computing the Tate pairing on elliptic curves in Hessian form. Analysis indicates that it is faster than all algorithms of Tate pairing computation known so far for Weierstrass and Edwards curves excepted for the very special elliptic curves with a 4 = 0, a 6 = b 2.KeywordsElliptic curveTate ParingHessian form

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.