Abstract

The inspection of packaging defects is a crucial aspect of maintaining the quality of industrial production, especially in the case of boxed products. This study introduces a novel approach for detecting physical defects in product packaging boxes by integrating image processing with deep learning, specifically transfer learning with two images as an input. The proposed method utilizes both top view and side view images of the packaging to determine its condition, a significant departure from the conventional single image input. Our approach incorporates 16 pre-trained model variants from EfficientNetV2, MobileNetV3, and ResNetV2 for transfer learning as feature extractors. The experimental findings demonstrate that the best model that leverages EfficientNetV2 variant achieves 100% accuracy and F1 score in terms of classification performance. However, the most optimal model in terms of classification performance and inference speed was the one that leveraged ResNetV2 variant. This model scored 95% accuracy and 95.24% F1 score, with an inference speed of 91 ms per prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.