Abstract

Ground-level ozone is one of the primary pollutants detrimental to human health and ecosystems. Catalytic ozone decomposition still suffers from low efficiency and unsatisfactory stability. In this work, we report a manganese-based layered double hydroxide catalyst (Co3Mn-LDH), which exhibited a superior ozone decomposition performance with the efficiency of 100% and stability over 7 h under a GHSV of 2,000,000 mL g−1h−1 and relative humidity of 15%. Even when the relative humidity increased to 50%, the ozone decomposition also reached 86%, which significantly exceeds as-synthesized MnO2 and commercial MnO2 in performance. The catalytic mechanism was studied by H2-TPR, FT-IR and XPS. The excellent performance of Co3Mn-LDH can be attributed to its abundant surface hydroxyl groups that ensured the preferentially surface enrichment of ozone, as well as the cyclic dynamic replenishment of electrons between multivalent Co2+/Co3+, Mn2+/Mn3+/Mn4+ and oxygen species that endowed the stable ozone decomposition. This work offers new insights into the design of efficient catalysts for ozone pollution control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.