Abstract

The catalytic system trans-[PdBr2(PPh3)2]/NEt3/PPh3/LiBr is highly active and selective in the oxidative carbonylation of iPrOH to the corresponding oxalate using benzoquinone (BQ) as a stoichiometric oxidant. The oxalate is formed together with minor amounts of carbonate and acetone. The influence of each component in the catalytic system is discussed together with the influence of the concentration of BQ, reaction time, temperature and CO pressure. NEt3 neutralizes the acid released in the catalytic cycle, thus favouring the formation of a dicarboalkoxy intermediate. Added PPh3 reacts with benzoquinone giving betaine, which is a base that contributes to a further enhancement of the catalytic activity. The Br− anion might coordinate the Pd(0) which is formed in the product forming step thus stabilizing it against decomposition and making its reoxidation easier and reentering into the catalytic cycle. The catalytic activity depends slightly only on the concentration of BQ, suggesting that either uncoordinated BQ is not involved in the slow step of the catalytic cycle or that BQ is strongly coordinated in these species. The catalytic activity toward oxalate increases upon increasing the concentrations of NEt3 and PPh3, whereas the selectivity toward carbonate and the formation of acetone remains practically constant. The increase of the pressure of CO has a similar effect, except that the formation of acetone is suppressed. It is suggested that at relatively high pressure of CO, a pentacoordinated species may be formed so that there is no place for any interaction between palladium and the C–H bond before the β-H elimination. Instead there is a nucleophilic intrasphere attack of the alkoxy ligand onto a CO ligand. After catalysis the precursor trans-[PdBr2(PPh3)2] has been detected, together with trans-[PdBr(COOiPr)(PPh3)2] and [Pd(BQ)(PPh3)2]. PPh3 remains coordinated to the palladium centre during catalysis. A BQ- and halides-assisted catalytic cycle is proposed. In this cycle, the reoxidation occurs through the release of a proton from an ammonium salt or a phosphonium salt, which are formed during the catalysis, with reformation of the catalyst precursor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call