Abstract

Titanate nanotubes (TNTs) were coated with a cyclic oligosaccharide (carboxymethyl-β-cyclodextrin, CM-β-CD) to obtain a photocatalyst (CM-β-CD-TNT) for efficiently activating molecular oxygen and removing the target contaminant. The hydrophobic cavity and the large specific surface area of the photocatalyst provide abundant active sites for activating molecular oxygen. The free radical capture experiment and quenching experiment showed that cyclodextrin could facilitate adsorption and activation of molecular oxygen to produce O2 .- . Therefore, compared with the pristine TNT, CM-β-CD-TNT accelerated the oxidation efficiency of paracetamol (APAP) by 3.4 times. Moreover, the ring cleavage reaction induced by CM-β-CD-TNT effectively reduced the acute toxicity of wastewater containing APAP. Furthermore, 100% of bisphenol A (BPA), bisphenol S (BPS), phenol, 2,4-dichlorophen (2,4-DCP), and carbamazepine (CBZ) were degraded by CM-β-CD-TNT after 2.5 h ultraviolet (UV) light irradiation. This strategy provides a new dimension for the advanced treatment of organic wastewater by organic macrocyclic molecule-modified materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.