Abstract

The use of doped wide-gap charge transport layers with high conductivity and low absorption in the visible range enables one to achieve high internal quantum efficiencies and to optimize the devices with respect to optical interference effects. Here, it is shown that this architecture is particularly useful for stacking several cells on top of each other. The doping eases the recombination of the majority carriers at the interface between the cells, whereas the recombination centers are hidden for excitons and minority carriers. By stacking two p-i-n cells both with a phthalocyanine-fullerene blend as photoactive layer, a power efficiency of up to 3.8% at simulated AM1.5 illumination as compared to 2.1% for the respective single p-i-n cell has been achieved. Numerical simulations of the optical field distribution based on the transfer-matrix formalism are applied for optimization. The concept paves the way to even higher efficiencies by stacking several p-i-n cells with different photoactive materials that together cover the full visible spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.