Abstract

Flexible Ti metal substrate-based efficient planar-type CH3NH3PbI3 (MAPbI3) organic-inorganic hybrid perovskite solar cells are fabricated by lamination of the flexible Ti metal substrate/dense TiO2 electron-transporting layer formed by anodization/MAPbI3/polytriarylamine and the graphene/polydimethylsiloxane (PDMS) transparent electrode substrate. By adjusting the anodization reaction time of the polished Ti metal substrate and the number of graphene layers in the graphene/PDMS electrode, we can demonstrate the planar-type MAPbI3 flexible solar cells with a power conversion efficiency of 15.0% (mask area = 1 cm2) under 1 sun condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call