Abstract

Thermally activated delayed fluorescence (TADF) molecules have emerged as a promising class of third-generation organic light-emitting diode (OLED) emitters that can achieve 100% internal quantum efficiency without the use of noble metals. However, the design of high-efficiency red TADF materials has been challenging due to limitations imposed by the energy-gap law. To overcome this challenge, two new TADF emitters, namely, 6-(4-(diphenylamino)phenyl)-2-phenyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (NI-TPA) and 6-(10H-phenothiazin-10-yl)-2-phenyl-1H-benzo[de]-isoquinoline-1,3(2H)-dione (NI-Pz), have been synthesized and characterized. These compounds exhibit strong TADF characteristics with a small energy gap (ΔEST) between the lowest excited singlet and triplet states, short delayed fluorescence lifetimes, high thermal stability, and high photoluminescence quantum yields. The OLED devices fabricated using NI-TPA and NI-Pz as emitters show orange and red electroluminescence with emission peaks at 593 nm and 665 nm, respectively, and maximum external quantum efficiencies (EQEs) of 11.3% and 7.6%, respectively. Furthermore, applying NI-TPA to cell imaging yielded excellent imaging results, indicating the potential of red TADF materials in the field of biological imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call