Abstract

This model-based design of experiments (MBDOE) method determines the input magnitudes of an experimental stimuli to apply and the associated measurements that should be taken to optimally constrain the uncertain dynamics of a biological system under study. The ideal global solution for this experiment design problem is generally computationally intractable because of parametric uncertainties in the mathematical model of the biological system. Others have addressed this issue by limiting the solution to a local estimate of the model parameters. Here we present an approach that is independent of the local parameter constraint. This approach is made computationally efficient and tractable by the use of: (1) sparse grid interpolation that approximates the biological system dynamics, (2) representative parameters that uniformly represent the data-consistent dynamical space, and (3) probability weights of the represented experimentally distinguishable dynamics. Our approach identifies data-consistent representative parameters using sparse grid interpolants, constructs the optimal input sequence from a greedy search, and defines the associated optimal measurements using a scenario tree. We explore the optimality of this MBDOE algorithm using a 3-dimensional Hes1 model and a 19-dimensional T-cell receptor model. The 19-dimensional T-cell model also demonstrates the MBDOE algorithm’s scalability to higher dimensions. In both cases, the dynamical uncertainty region that bounds the trajectories of the target system states were reduced by as much as 86% and 99% respectively after completing the designed experiments in silico. Our results suggest that for resolving dynamical uncertainty, the ability to design an input sequence paired with its associated measurements is particularly important when limited by the number of measurements.

Highlights

  • Since experiments can be expensive and time consuming, it is important that they are planned to generate useful data

  • Many mathematical models that have been developed for biological systems are limited because the complex systems are not well understood, the parameters are not known, and available data is limited and noisy

  • model-based design of experiments (MBDOE) combines the mathematical models with experiment design to strategically design optimal experiments to obtain data that will contribute to the understanding of the systems

Read more

Summary

Introduction

Since experiments can be expensive and time consuming, it is important that they are planned to generate useful data. The data obtained from strategically designed experiments has facilitated the creation of mathematical models that relate experimental stimuli to measurable outcomes. These models typically describe the system’s input-output relationship but fail to capture or encode knowledge of the system’s internal mechanisms and processes. Mechanistic and semi-mechanistic mathematical models encode the current understanding of the internal processes of the biological system even though many of these internal states or species are not directly measurable These mechanistic models can be used to support optimal experiment design that considers the current knowledge of the system interactions and practical experimental constraints. This work advances current abilities to design experiments to resolve the trajectories of target states of a biological system model, thereby reducing its dynamical uncertainty

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.