Abstract
Visualization of multivariate data sets is often done by mapping data onto a low-dimensional display with nonlinear dimensionality reduction (NLDR) methods. Many NLDR methods are designed for tasks like manifold learning rather than low-dimensional visualization, and can perform poorly in visualization. We have introduced a formalism where NLDR for visualization is treated as an information retrieval task, and a novel NLDR method called the Neighbor Retrieval Visualizer (NeRV) which outperforms previous methods. The remaining concern is that NeRV has quadratic computational complexity with respect to the number of data. We introduce an efficient learning algorithm for NeRV where relationships between data are approximated through mixture modeling, yielding efficient computation with near-linear computational complexity with respect to the number of data. The method inherits the information retrieval interpretation from the original NeRV, it is much faster to optimize as the number of data grows, and it maintains good visualization performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.